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Abstract. Traditional end-to-end congestion control measures packet loss or 
round-trip delay to sense network congestion. However, this mechanism may 
not work well in heterogeneous networks. Recently some router-assisted con-
gestion control protocols are proposed to address this challenge. Quick Flow 
Control Protocol (QFCP) is one of them. QFCP allows flows to start with high 
initial sending rate and converge to the fair-share rate quickly based on feed-
back from routers. The rate allocation algorithm is quite simple and only needs 
to be run periodically by routers. We have implemented QFCP in ns-2. Simula-
tions have been done to address the issues such as flow completion time of 
Poisson-arriving Pareto-distributed-size flows, adaptability to changing flow 
numbers, fairness on flows with different RTTs, and robustness to non-
congestion packet losses. The preliminary results are promising. 

1 Introduction 

Congestion occurs when the packets injected into the network are more than that it is 
capable to deliver. In this situation, if the senders do not slow down their sending rate 
to relieve the traffic load, more and more packets will be dropped by the routers and 
little useful work can be done, which is called congestion collapse. Therefore, in order 
to make the network work stably and effectively, congestion control mechanisms 
have to be employed. Traditionally most of them are designed based on the end-to-
end concept, only using the signals that can be measured at the end-system to sense 
the possible network congestion. Some protocols use packet loss as the signal of net-
work congestion, such as TCP, HighSpeed TCP, and Scalable TCP. Others employ 
increasing round-trip delay as the implication of congestion, such as TCP Vegas, and 
FAST TCP. However, the assumption that packet loss or delay increase indicates 
network congestion does not always hold when the path includes wireless links. Some 
factors other than congestion such as link bit-error rate, unstable channel characteris-
tics, and user mobility may also contribute to packet loss or round-trip delay variety. 
For example, studies have shown that TCP performs poorly in wireless networks due 
to its inability to distinguish packet losses caused by network congestion from those 
attributed to transmission errors. Much valuable bandwidth resource is wasted since 
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TCP unnecessarily reduce its congestion window when non-congestion-related loss 
happens. 

Recently some router-assisted congestion control protocols have been proposed to 
address this challenge, such as XCP [1], VCP [2], and RCP [3]. XCP is the first suc-
cessfully designed protocol of this kind. It outperforms TCP in both conventional and 
high bandwidth-delay networks, achieving fair bandwidth allocation, high link utiliza-
tion, small standing queue size, and low packet drops. VCP can be treated as a sim-
pler version of XCP. It uses only 2 bits to encode the feedback from routers and is 
easier to deploy in the Internet. RCP proposes to use per-flow rate instead of per-
packet window adjustment as the feedback from routers. The advantage of router-
assisted congestion control mechanism is that routers are the place where congestion 
happens and only routers can give precise feedback on the network condition. The 
disadvantage is the deployment difficulty and the additional workload on routers. So 
there is a trade-off between the performance and the complexity. If router-assisted 
scheme does not outperform end-to-end scheme significantly, end-to-end scheme is 
preferred since it is easier to deploy in the Internet. 

Another issue is that Additive Increase Multiplicative Decrease (AIMD) algorithm 
is too conservative for flows in high bandwidth-delay product networks. This be-
comes increasingly important as the Internet begins to include more high-bandwidth 
optical links and large-delay satellite links. Research on the Internet traffic has re-
vealed an important feature at the flow level: most of the flows are very short, while a 
small number of long flows account for a large portion of the traffic [4], [5]. This is 
known as the heavy-tailed distribution. But TCP models flows as “long-lived flows”, 
which means that all flows are assumed to be long enough to reach their fair-share 
sending rates before finishing. This assumption is acceptable when the Internet is 
mainly composed of low-speed links. However, if most flows are short as in today’s 
high-speed networks, can the congestion control algorithm built in TCP continue to 
work efficiently? The answer is no. On the one hand, a short flow always starts with a 
very low initial sending rate and very likely finishes before reaching its fair-share 
rate. The duration of a short flow may be significantly prolonged due to packet loss, 
which causes timeout and packet retransmission [6]. On the other hand, a large num-
ber of short flows also adversely impact the performance of long flows. [7] shows that 
randomly generated sequence of short flows may reduce the throughput of long flows 
up to 10%, and some special pattern of short flows can even cause greater reduction 
(>85%). The reason is that short flows spend most of their lifetime in the Slow Start 
phase when their congestion windows increase exponentially. Thus, a burst of short 
flows can rapidly capture a great portion of the bandwidth and driven long flows into 
timeout and window-halving. But the AIMD algorithm grabs the available bandwidth 
very slowly and makes the time of converging to the fair-share rate very long for the 
long flows. 

As the Internet keeps evolving into a high bandwidth-delay product (BDP) net-
work, more and more flows are becoming short flows. And the adverse impact of 
TCP congestion control may become increasingly severe. We need to design a new 
congestion control protocol for the high-speed networks achieving the following met-
rics: 
• For short flows, they can get high initial sending rates at the startup so that they 

can finish quickly (“quick start”). 
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• For long flows, they can converge to the fair-share sending rate quickly and have 
maintainable high throughput (“quick convergence”). 
In most currently proposed congestion control protocols, each new flow starts with 

a low sending rate and then probes the network for the unused bandwidth. And they 
only show that they can achieve fair rate allocation for long-lived flows. But short 
flows may suffer since they are not long enough to compete for fair bandwidth alloca-
tion. 

If the router can find a way to compute the number of active flows and assign the 
fair-share rate to each flow, there will be no need to let flows wait for many RTTs to 
probe the network by themselves. Hence, we try to design a router-assisted congestion 
control protocol similar to XCP and RCP. The sending rate of each flow is controlled 
by routers along the path. The router senses the degree of congestion periodically and 
calculates a global fair rate for all flows passing through it. A new flow will start with 
the same sending rate as the other ongoing flows because they get the same feedback 
from routers. Additionally we want the routers: 
• Do not store any per-flow information. 
• Do not maintain any large hash tables or do any hash computation (vs. hash-based 

flow counting algorithm). 
• Do not do complex per-packet calculation on routers. 

2 Protocol Design 

2.1 Framework 

The basic idea is to establish a feedback control system in the network. Periodically a 
router checks the input traffic load and the queue size to sense the current network 
condition. Then it uses this information to generate feedback to control the sending 
rate of all flows through it. 

We use a similar framework of Quick-Start [8], but we extend the rate-request-and-
grant mechanism to the whole lifetime of a flow: (1) The sender includes a Rate Re-
quest field in the header of each outgoing packet and sets the initial value of this field 
to be the desired sending rate of this sender; (2) When the packet reaches a router, the 
router compares the value in Rate Request field with the router’s own fair-share rate 
and puts the smaller one back into that field; (3) On receiving the packet, the receiver 
copies the Rate Request field into the Rate Feedback field of the corresponding ACK 
packet and sends it back to the sender; (4) When the sender receives the ACK packet, 
it reads the value in the Rate Feedback field and adjusts its sending rate accordingly. 

The sender sets the size of its congestion window according to the rate feedback 
using the formula: 

cwnd = rate * RTT , (1) 

where cwnd is the congestion window size, rate is the rate feedback, and RTT is 
the moving average round-trip time measured by the sender. This is because conges-
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tion window governs the flow throughput and its size (cwnd) determines the number 
of packets that can be outstanding within one RTT. 

2.2 Rate Allocation Algorithm 

The rate allocation algorithm is used by the router to compute the fair-share rate R pe-
riodically. One router maintains only one global fair-share rate for each output inter-
face. This rate R is the maximum allowed rate for flows going through this interface 
during the current control period T. T is set to be the moving average of RTTs of all 
packets. The current number of flows through this interface is estimated using the ag-
gregate input traffic rate and the fair-share rate assigned in the last control period. 
And the fair-share rate is updated based on the flow number estimation as follows. 
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where N(t) is the estimation of the flow number, y(t) is the input traffic rate during 
the last control period, R(t) is the fair-share rate, C is the bandwidth capacity of the 
output link, q(t) is the queue size, β is a constant parameter, T is the control period. 

This parameter β can be set as a policy by the router administer. A large value of β 
means one wants to drain up the queue more aggressively. The theoretical analysis of 
the impact of this parameter is left to future work. Currently we set the value of β as 
0.5 in our ns-2 implementation. 

2.3 Technical Details 

Burstiness Control: When designing congestion control protocols for large BDP net-
works, researchers often find that pure window-based rate control is not enough and 
additional burstiness control is needed (e.g., FAST TCP [9]). This is because window 
control is too rough and may trigger a large burst of packets injected into the network 
all at once (e.g., in the Slow Start phase of TCP). But such violent increase of conges-
tion window is sometimes unavoidable in order to achieve good responsiveness and 
high throughput, especially in large BDP networks. In QFCP, we use the rate-based 
pacing to avoid possible burstiness caused by a sudden increase of congestion win-
dow. So although the sender may set a large window as approved by the rate feedback 
in the first ACK packet, it still needs to pace these packets out in one RTT based on 
the assigned sending rate. Thus, congestion window controls how many packets can 
be sent in one RTT, while burstiness control paces these packets out in a smooth way. 

Rate Stabilization: If the assigned fair-share rate changes too quickly, the formula 
(2) we use to estimate the number of flows based on the previously assigned rate may 
fail. The reason is that there may be flows with RTT longer than the control period T 
using R(t−2T) instead of R(t−T) as the sending rate. So for the sake of the accuracy of 
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flow number estimation, we don’t want the rate assigned for two consecutive intervals 
to be very different. Thus, in order to stabilize the rate, we use the average of the cur-
rent computed rate and the most recently assigned rate as the new rate. 

Reaction to Packet Loss: If the queue of an interface is overflowed, the router will 
drop packets and add the number of dropped packet to q(t) as q(t) in formula (3), be-
cause this is the real queue size that should be drained during the next interval. The 
router will use this “virtual queue size” in formula (3) to compute the new rate. The 
sender just retransmits the dropped packets without any further reaction. This is very 
different from the loss-based congestion control protocols, which will adjust the con-
gestion window if encountering packet loss. So in QFCP, it is very easy to differenti-
ate the two kinds of packet loss: one is due to the congestion; the other is due to 
transmission error. Because the rate is totally determined by the routers, the routers 
will adjust the rate according to the degree of congestion. There is no need for the 
end-systems to guess whether congestion happens or not when they encounter packet 
loss. 

3 Simulation and Evaluation 

In this section, we evaluate the performance of QFCP through extensive simulations 
using the packet-level network simulator ns-2 [10]. Unless specified otherwise, we 
use the dumb-bell network topology, where senders and receivers reside on each hand 
side and all flows go through the same bottleneck link. Simulations are run long 
enough to ensure the system has reached a consistent state. The parameter β of QFCP 
is set to 0.5. The buffer size on routers is set to be the delay-bandwidth product. The 
data packet size is 1000 bytes. And we use RED as the queue management scheme for 
TCP. 

3.1 Flow Completion Time 

For fixed-size flows (e.g., FTP, HTTP), the most attractive performance criterion is 
the flow completion time (FCT). Users always want to download files or web pages 
as fast as possible especially when they have paid for high-speed access links. Since a 
large number of flows in the Internet are short web-like flows, it is also important to 
investigate the impact of such dynamic flows on congestion control. Here we simulate 
a scenario where a large number of Pareto-distributed-size flows share a single bottle-
neck link of 150 Mbps. This is a typical mathematical model for the heavy-tail dis-
tributed Internet traffic which is composed of many short flows. The total flow num-
ber is 60000. The common round-trip propagation delay is 100 ms. Flows arrive as a 
Poisson process with an average rate of 625 flows per second. Flow sizes are Pareto 
distributed with an average of 30 packets and a shape parameter of 1.2. Thus, the of-
fered traffic load on the bottleneck link can be estimated as: 8 ∗ packet_size ∗ 
mean_flow_size ∗ flow_arrival_rate / bandwidth = 1. Such high traffic load is often 
the situation where differentiates the performance of congestion control protocols. We 
record the size and completion time for each flow in the simulation, then average the 
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flow completion time for flows with the same size. Each simulation is conducted for 
each protocol: TCP-Reno, XCP, RCP, and QFCP. The scenario settings and the input 
data (i.e., the size and arriving time of each flow) are identical for each simulation. 
The results show that the Average Flow Completion Time (AFCT) in QFCP is sig-
nificantly shorter than that in TCP, XCP or RCP. 

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

70

Flow Size (packets)

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n 
Ti

m
e 

(s
ec

on
ds

)

 

 
TCP
XCP
RCP
QFCP

 
0 500 1000 1500 2000 2500 3000

0

5

10

15

20

25

30

Flow Size (packets)

A
ve

ra
ge

 F
lo

w
 C

om
pl

et
io

n 
Ti

m
e 

(s
ec

on
ds

)

 

 
TCP
XCP
RCP
QFCP

 
(a) all flows (b) flows with size < 3000 packets 

Fig. 1. Average flow completion time (AFCT) vs. flow sizes for Poisson-arriving Pareto-
distributed-size flows. (a) is the global picture for all flows. (b) is a close look at short flows 

For TCP, the AFCT is very oscillatory against the flow size. The reason is that al-
though the exponential increase of congestion window in Slow Start does help some 
short flows finish quickly, the duration of other flows are prolonged due to packet 
loss. And we should point out that Slow Start is not a good way to shorten the dura-
tion of flows, because it actually does not know the proper initial sending rate but just 
intends to fill up the buffer of routers and cause packet losses, which prolongs the du-
ration of all flows. 

For XCP, it does not use Slow Start. Instead, when new flows join, XCP tries to re-
claim the bandwidth from the ongoing flows and reallocate it to the new flows little 
by little. For short flows they may finish before reaching the fair sending rate. That is 
why the completion time of short flows in XCP is the longest. However, the AFCT 
against flow size in XCP is more stable than in TCP because XCP flows experience 
fewer packet losses. 

For RCP and QFCP, both of them give a high initial sending rate to new flows 
based on the feedback from routers and help short flows finish quickly. However, the 
formula used in RCP to estimate the number of flows holds only when the input traf-
fic just fills up the link capacity C, otherwise it leads to wrong estimation of the flow 
number. This wrong estimation of flow number makes the rate allocation in RCP un-
der-optimum and thus prolongs the FCT in general compared with QFCP. 

3.2 Adaptability to Changing Flow Numbers 

For fixed-time flows or long-lived flows, we are more interested in the fairness of link 
bandwidth sharing among flows, especially when flow number changes causing 
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bandwidth reallocation. In this simulation, four flows share a common bottleneck link 
of 45 Mbps. The common round-trip propagation delay of each flow is 40 ms. Flow 
1-4 start at time 0, 2, 4, 6 seconds and stop at 14, 12, 10, 8 seconds respectively. The 
results show that QFCP can converge quickly to the fair-share sending rate as flows 
join and leave, and can maintain a high utilization of the bottleneck link. This simula-
tion also shows a significant difference between QFCP and XCP: the high initial 
sending rate. In QFCP, any new flow starts with the same rate as the other ongoing 
flows, and then converges to the fair rate if this new flow is long enough. While in 
XCP, a new flow starts with a low sending rate and then converges to the fair rate. 
That’s why QFCP can help short flows finish much faster than XCP as demonstrated 
in the previous simulation. 
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(a) QFCP: flow throughput (b) QFCP: bottleneck link utilization 

Fig. 2. Flow throughput and bottleneck link utilization 

3.3 Fairness on Variant RTTs 

In this scenario we have 10 flows with different round-trip times sharing a common 
bottleneck link of 45 Mbps. The flow RTTs range from 40 ms to 220 ms in a step of 
20 ms. All flows start at time 0 s and we wait until they converge to the steady state. 
The results in Fig. 3 show that although the RTTs of the flows are very different, 
QFCP fairly allocates the bottleneck bandwidth among the flows and converges to the 
fair-share rate even faster than XCP. For TCP, Fig. 3(c) (the legend is not shown for 
the sake of visibility) shows that some flows occupy most of the bandwidth while 
other flows keep sending at low rate. We then calculate the average throughput for 
each flow with different protocols. Fig. 3(d) shows that QFCP obtained the best fair-
ness. It also confirms that TCP penalizes against flows with higher RTTs. Router-
assisted protocols (QFCP, XCP) provide relatively fair bandwidth allocation for all 
flows although they use the average RTT as the control interval. However, for XCP, 
when the available bandwidth is large, flows with short RTTs increase their window 
much faster than flows with long RTTs, which causes transient unfairness as you can 
see in Fig. 3(b). This is because a flow with short RTT updates its window more fre-
quently and gains more benefit from the positive feedbacks. While in QFCP, all flows 
get the same feedback on rate if they go through the same bottleneck no matter what 
RTTs they have. Thus, QFCP can converge to the fair-share rate faster than XCP. 
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(a) QFCP: flow throughput (b) XCP: flow throughput 
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(c) TCP: flow throughput (d) Fairness 

Fig. 3. Fairness on flows with different RTTs 

3.4 Robustness on Lossy Link 

This simulation tests for the sensitivity to non-congestion loss. The bottleneck link is 
100 Mbps and can randomly generate packet losses at a fixed probability. The com-
mon RTT is 40 ms. Fig. 4(a) tests for data packet losses on the forward direction and 
Fig. 4(b) tests for ACK packet losses on the reverse direction. The loss rate ranges 
from 0.0001 to 0.1 and covers most typical loss ratios seen in a wireless network. 
Each simulation runs for 60 seconds and we record the highest acknowledged packet 
number seen at the sender to calculate the goodput. Goodput is the data packets that 
are successfully transferred (ACKed). It is necessary to differentiate goodput from 
throughput in this scenario since lossy link may cause massive packet retransmission 
but only goodput (highest ACKed packet number) is the work actually done from the 
user’s vision. 

The simulation results in Fig. 4 show that generally router-assisted congestion con-
trol performs better than TCP. ACK losses do not impact the goodput of XCP or 
QFCP very much because ACKs are cumulative and ACK loss can be recovered by 
subsequent ACKs. In contrast, data packet losses require retransmission. QFCP is 
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more robust to data packet losses than XCP because the feedback in QFCP has more 
redundancy. For XCP, each ACK carries unique feedback on congestion window ad-
justment and the whole ACK packets in one RTT together give the correct value of 
aggregate feedback. Packet loss may cause difference between the actual congestion 
window size and the one expected by routers, especially when the lost ACK packet 
carries a large value of feedback. This may happen when the current window is small 
while the target window is large (e.g., the situation after a timeout). But for QFCP, 
since the feedback is directly the flow rate and this value is only updated once every 
control period, any ACK in the current control period can give the correct window 
size to the sender. This kind of information redundancy gives high chance to prevent 
senders from starvation (keep sending at unnecessary low rate for a long time) in a 
lossy network. 
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(a) Data packet loss (b) ACK packet loss 

Fig. 4. Goodput on a lossy link 

As mentioned before, packet loss is not treated as congestion signal in our scheme. 
For example, if 3 duplicate ACKs are received by the sender, TCP will halve the con-
gestion window and retransmit the lost packet indicated by the dup-ACKs. This win-
dow shrinking may significantly reduce the flow rate and may be unnecessary if the 
packet loss is due to transmission media error instead of congestion. While in QFCP, 
upon 3 dup-ACKs, the sender will only retransmit the lost packet without shrinking 
the congestion window, unless it is told to do so explicitly by the feedback field of the 
ACK. This prevents unnecessary reduction on the flow rate. But for packet loss indi-
cated by timeout event, QFCP still shrinks the congestion window as TCP does. This 
is a conservative procedure because no feedback is available at this point. But if the 
network is not congested (i.e., a non-congsetion loss), any subsequent ACK will re-
store the congestion window size to a proper value and the flow rate will be recovered 
immediately. 

4 Conclusions 

Pure end-to-end congestion control scheme may unnecessarily reduce the sending rate 
when encountering non-congestion-related packet loss and underutilize the wireless 
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networks. Router-assisted mechanism may help us design more robust congestion 
control protocols for better utilizing the heterogeneous networks. But we should note 
that there is a trade-off between the performance and the complexity. In this paper, we 
design QFCP of this kind of protocol. It gives a high initial sending rate for any new 
flow as approved by routers along the path. The scheme can significantly shorten the 
completion time of both short flows and long flows. All flows can converge to the 
fair-share sending rate quickly whenever new flows join or old flows leave. And it 
also shows fairness for flows with different RTTs. It is easy for QFCP to differentiate 
non-congestion losses from congestion losses and thus prevent unnecessary window 
shrinking. The computation overhead on routers is acceptable and most calculations 
only need to do periodically. Future work may include implementing QFCP in Linux 
and deploying it in the real networks to test its performance. Establishing some 
mathematical models of QFCP and doing theoretical analysis on it are also desirable. 
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